PhD Defended

On June 21st, 2018, I successfully defended by doctoral dissertation, Detection of Respiratory Phase Adaptation to Heard Music.  Without a doubt, listeners do subtly and subconsciously adjust when they breathe to fit with music, lining up specific respiratory phases to specific moments, but this happens under limited conditions. Only some moments of music draw respiratory phase alignment, and some people show stronger susceptibility to music’s coordinating influence.

With the extra three months granted by my committee, my quantitative analysis of listener respiration was extended with qualitative analysis of alignment patterns in repeated response studies and audience experiments. Activity analysis identified moments of exceptional phase alignment and music theory enriched my interpretation of the corresponding stimulus. Out of 36 pieces of music, 21 provoked identifiable moments of alignment and out of these arose four theories of how listeners’ breathing could be drawn or cued by what they heard:

  • Embodied perception/motor imagery: Some listeners toke inspirations when they might have, were they performing the music. This happens to vocal music, whether or not the performers’ breaths could be heard in music recordings. Examples from one case study participant can be seen in the attached figure, with inspirations (blue stars on chest expansion measurements) coinciding with performer inspirations during this a cappella folk song (highlighted in red on sound wave).
  • Inspiration suppression for attentive listening: The noise of inspiration and expiration can get in the way of auditory attention and there are (rare) moments in music when listeners seem to delay breathing in or out so as to hear better. A moment like this is also in the attached figure, with post-expiration pauses extended from 97.4 s.
  • Respiratory marking of salient moments: Listeners would sometimes breath in our out with recurring elements of musical motives, as if acting with something important or familiar. This was more common in structurally complex music and moments of strong affect, such as powerful lyrics, increasing tension, or exceptional aesthetics.
  • Post-event respiratory reset: In a few cases, well timed respiration cycles occurred after events, like after the last line of a song. This is reminiscent of relaxing sighs and similar actions through to help the respiratory system reset back to normal relaxed quiet breathing.

Causal mechanisms for these four theories are suggested by current respiration and music cognition research, however they each require further exploration on experimental data beyond what was studied here. And it is also possible they might arise more frequently than could be captured by these statistics, limited as they are to behaviour that co-occurs with the music at least 20-40% of the time. Between a theorize mechanism and well designed experiments, it may yet be possible to detect these deviation in action, giving us further clues into how listeners are engaging with the music they hear.

More details to come in the shape of my final dissertation document. To be completed in the next month or so.


Breathing in Music: Measuring and Marking Time

(This is post is derived from a poster presentation at the Making Time in Music conference, hosted by the Faculty of Music of Oxford University, Sept 14-16th, 2016)


Our breath marks time for the entirety of our lives. Whether a period of 2 seconds or 20, we know roughly how it will continue or be adjusted to new demands, and this need for fresh air imposes an inescapable rhythm just beyond what is readily heard as metrical. We use breath to communicate with speech and affective displays, but we also monitor each others’ breathing and use this information to coordinate interactions: breathing in anti-phase when in dialogue, or together when synchronising actions. Obviously, musical activities such as singing and playing wind instruments involve exhalations and the particular physical constraints of our respiratory system. Other components of breath are used to prepare and set the timing of actions. For example, the inhalation at the beginning of a piece defines tempo and intensity for many solo performers and small ensembles, and some types of musicians are extremely practiced at picking up all that is needed to play in synch from one careful gasp. We might consider breath to be auxiliary to the actions of music making, just a means to the sound, but this biological system may be play a fundamental role in our understanding of music and musical time. There is growing evidence that listening to music can engage our respiratory system, drawing us into a specific physical division of time. This coordination is not so strict as breathing with the heard performers, but rather a subtle alignment of phase at specific moments in a particular piece. For this to occur, even intermittently, our respiratory system must be engaged in the work of understanding what we hear. Voluntarily or unconsciously, breathing informs synchrony on the scale of milliseconds, seconds, and minutes, and this phasic and adaptive system promises to be powerful in defining musical time both physically and metaphorically.

Continue reading “Breathing in Music: Measuring and Marking Time”

A(nother) definition of music

At last summer’s SMPC, I shared a quasi-interactive poster with my most current definition of music. The poster invited viewers to add examples or counter-examples of musical experiences via post-its to where ever it seemed spatially appropriate. Since then, the poster has been in the PhD office at NYU, and a couple more edges cases have been added. Still, the definition stands.

It goes as follows:

Music is a broadcast signal enabling sustained concurrent action.

My claim is that these six terms form a necessary condition for something to be perceived as music or musical. Perception here is relevant as our processing of sensory information adapts to extract useful information for sounds and signals, and the relevance of music and its various qualities are displayed in the structure of these perception strategies. But by using our perceptual processes to define music, the associated experiences might not all fall within with our culture’s delimitations on the concept.

Screen Shot 2016-06-08 at 22.01.43

The attached poster does the work of explaining each of the terms and their relevance, but I’ll add an important challenge to the definitions.

“What about the wildebeests?”

This was asked by a fellow grad student, with a grin, but the question is reasonable. A herd of wildebeests running sounds and feels thunderous, any member of the herd would hear it as coming from it’s herd-mates, and this sound inspires a strong impulse to run too, an obvious instance of sustained concurrent action. So is the sound of a running herd music to a wildebeest ears? I would have to say maybe, conditioned on the two remaining terms: signal and enabling. For the sound to be a signal, it would have to transmit so kind of intentional herd-running, individual members falling into a special running style, with perhaps some extra regularity or heaviness to their gait. The enabling bit is a little more tricky. Music doesn’t determine action, instead, it gives us some well fitting options. For the sound of a running herd to enable a single wildebeest’s actions, said individual wildebeest should be able to resist the suggestion to join in and and have some choice as to how, if the suggestion is accepted. Having no familiarity with the running habits of ungulates of any kind, I can’t be more specific.

A similar human case came to mind recently when I crossed paths with #OrangeVest, a performance art piece by Georgia Lale about the ongoing Syrian Refugee crisis. A block of some twenty adults in orange life vests were marching slowly and silently through the streets of New York, with helpers around to shoo traffic and explain the action. In an instant, I recognized the deliberateness in their movements, their aura of stillness, and I felt the tug to step in line. But instead, I waited for them to pass and looked up the project later. If you feel inspired to lend some (more) support to the cause, consider donating to MOAS, Refugee Support Network, or your preferred means of distributing humanitarian aid.

Essay for Performers: Empirical Research and Artistic Expertise

Recently downloaded the latest Nosaj Thing album, Home. It’s less dub than his earlier stuff (which I also really enjoyed) but this album has been perfect background for writing and riding, while still rich enough for getting suspended in the sound. Or at least, that is its effect on me. The expert knowledge of a musician like Nosaj Thing is in the insights which enable his craft: sensitivities and controls which give inspiring opportunities and the sufficiently successful results. You might not have the same response to the shimmering pads of Home, but enough people have enjoyed his style of output to encourage a third album release, giving value and credibility to his aesthetic choices. This knowledge through practice is, in essence, coming to know the world or some topic through anecdote: instances of trial and error without systematic investigation of what should or could happen. For an individual creator, the systematic approach would be ridiculously inefficient. When your priority is to make something, having some idea of what is possible in many cases is more useful than knowing everything about very few.

Continue reading “Essay for Performers: Empirical Research and Artistic Expertise”

Essays for performers: Perception, Action, Empathy

I’ve begun writing what I hope will be a regular series of short essays on performance and cognition, intended for non-neuroscience, non-music cognition readers. These should be treated as exercises rather than properly-formed treatments of issues dear to my heart. I don’t like writing, but I need the practice, and sharing is a good motivator for editing. Given those caveats, here is the first. Sorry for the second person.

Note: MOTL stands for More On That Later, signalling a topic I hope to return to another day.


Embodied perception, Mirror Neurons, and Empathy

Different parts of the brain are crucially involved in different cognitive functions. Sensory systems have key locations, auditory on the sides, vision in the back, and somatosensory arching between the ears. While thought doesn’t simply happen in discrete locations (MOTL), the sequences of neural activity (electric and chemical) that supports action, reaction, thought, and sensation concentrate in these areas, depending on what is going.

When we make an action, like when we say a word, the motor commands which run to the muscles in our face, throat, and abdomen are shadowed by efferent copies of the action to our sensory processing areas. The auditory cortex is readied to hear the acoustic consequences of speech, somatosensory cortex is prepared for our eventual lip and tongue positions (proprioception) and all the transient changes in how these sensitive areas are in tactile contact. Anticipated sensory consequences of our actions are then compared to inputs collected from our sensory organs such as the vibration of vocalisation through bone and acoustic reflections which reach our eardrums. Continue reading “Essays for performers: Perception, Action, Empathy”